

Security in the CernVM File System and the Frontier
Distributed Database Caching System

D Dykstra1 and J Blomer2
1 Scientific Computing Division, Fermilab, Batavia, IL 60510, USA
2 PH-SFT Department, CERN, Geneva, Switzerland

E-mail: dwd@fnal.gov or jblomer@cern.ch

Abstract. Both the CernVM File System (CVMFS) and the Frontier Distributed Database
Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments
using http proxy caches. Neither system provides privacy or access control on reading the
data, but both control access to updates of the data and can guarantee the authenticity and
integrity of the data transferred to clients over the internet. CVMFS has since its early days
required digital signatures and secure hashes on all distributed data, and recently Frontier has
added X.509-based authenticity and integrity checking. In this paper we detail and compare
the security models of CVMFS and Frontier.

1. Introduction
The CernVM File System [1] (CVMFS) and the Frontier Distributed Database Caching System [2]
(Frontier) are two systems for providing copies of data to hundreds of thousands of jobs on a
worldwide computing grid of tens of thousands of computers. CVMFS is designed to distribute
software releases, and Frontier is designed to distribute the results of database queries. Both have
been deployed by the large LHC collaborations ATLAS and CMS on the Worldwide LHC Computing
Grid (WLCG), in addition to other collaborations. Both systems use RESTful http protocols for
transport and make use of http proxy caches at each site to enable scaling to such large numbers of
computers and long distances. Because the data has to be read in so many locations, and because it
contains no information that needs to be kept private, the data is publicly available; there is no access
control on reading it. However, it is important that the data is not tampered with during transport. For
this reason, both systems provide mechanisms for clients to securely verify the integrity and
authenticity of the data, to ensure that the data received matches what was originally sent by the
trusted servers. Write access to the original data the servers read is controlled through separate secure
mechanisms that are beyond the scope of this paper.

Section 2 contains the details of the CVMFS authenticity and integrity checking mechanism that
has been in production for a number of years. Section 3 has the corresponding Frontier mechanism
that has recently been implemented. Section 4 compares the CVMFS and Frontier security
mechanisms.

2. CVMFS Authenticity and Integrity Checking
Since CVMFS distributes executable software, the need for checking the authenticity and integrity of
the transferred data is obvious: if someone inserted a fake server or tampered with the transferred data,

they could easily take over enormous computing resources by inserting their own code. Figure 1
shows the components and information flow in CVMFS authenticity and integrity checking.

Repository
 servers

Repo keys

.cvmfswhitelist

.cvmfspublished
Repo public key
Catalog
Files

Repositories

Web server

Stratum 0

Master key
Repo keys fingerprints

Signed .cvmfswhitelist

http

http

 Stratum 1s

 Squids

http

 Clients

Stratum 0 public key
Optional blacklist

 Figure 1: CVMFS authenticity and integrity checking components and flow

This is a summary of how CVMFS authenticity and integrity checking works:

1) There is a public/private cryptographic key pair for each CVMFS “Stratum 0” computer. A
Stratum 0 computer corresponds to an internet domain name, for example cern.ch. The
public half of the pair is distributed to every CVMFS client computer, usually via signed
rpms. The private half, known as the “master key,” is used only on the Stratum 0 computer.

2) There is another public/private cryptographic key pair for each CVMFS repository, for example
for atlas.cern.ch and cms.cern.ch. Once every 30 days or less, for each of its repositories the
Stratum 0 generates and signs using the master key a file called “.cvmfswhitelist” that
contains the secure fingerprint(s) of the repository’s public key(s) with an expiration date 30
days later, and sends the file to the computer that publishes the repository. The private half of
the key stays on the repository server, and the public half is distributed like other files in the
repository.

3) For every publish operation, the repository server stores each new file under a name that is the
secure hash of the contents of the file, and creates a catalog translating all original file names
to the secure names. The catalog then becomes a file distributed like other files in the
repository. The publish operation also creates and digitally signs with the repository’s private
key a file called “.cvmfspublished” which contains the secure hash of the catalog and the
secure hash of the repository’s public key file. The repository server then makes all the files

available including .cvmfswhitelist on a web server (which is typically on the Stratum 0
computer but doesn’t have to be). The files are replicated on Stratum 1 servers and cached on
intermediate squids, but that has no impact on the security.

4) CVMFS clients confirm that the signature on .cvmfswhitelist is a valid signature of the Stratum
0’s public key which has not expired, that the enclosed fingerprint matches the fingerprint of
the repository’s public key which it finds by the hash in .cvmfspublished, and that the
signature on .cvmfspublished is valid based on that repository’s public key. This establishes
authenticity, and from then on all accesses are only to files that are named by secure hashes.
Every time one of the files is downloaded, including catalogs, CVMFS clients confirm that the
secure hash of the contents matches the name, which establishes the file’s integrity. The
signatures on .cvmfswhitelist and .cvmfspublished are verified at the time the repository is
mounted and when they’re re-downloaded, which happens when repositories are accessed
after an expiration time (typically 60 minutes).

The rest of this section gives more details about the CVMFS authenticity and integrity checking

implementation.

2.1. Cryptographic functions
The cryptographic library that CVMFS uses is libcrypto from the OpenSSL project [3]. The Stratum
0 public/private key is a currently a 2048-bit RSA key, but any size RSA key is supported. The secure
hash function for files is SHA1.

The digital signatures on .cvmfswhitelist and .cvmfspublished are simply an RSA encryption of the
SHA1 hash of the first part of the file (before the line containing “—“) using the appropriate private
key; the signatures are verified by decrypting the signature with the public key and comparing the
result to the hash of the first part of the file.

The repository servers’ keys are in X.509 format, for the convenience of including extra
information such as the name of the publisher. They also use 2048-bit RSA keys and work with other
sizes. Certifying authorities and expiration times are not checked, however. Also, only SHA1
fingerprints are currently supported.

2.2. Stratum 0 keys
Since the Stratum 0 private master key is only used about once a month, to protect against the
possibility of it getting stolen it can be kept offline on a smartcard and not kept online anywhere. The
cern.ch master key is managed this way.

Clients can be configured with more than one public key for each Stratum 0. This is especially
useful for when the master is only kept on a smartcard; if the card malfunctions, there can still be a
backup with another master key.

2.3. Details of .cvmfswhitelist
This are the items in .cvmfswhitelist relevant to security:

1) The expiration timestamp. Clients make sure this time isn’t in the past.
2) The repository name. Clients make sure the name matches the expected name.
3) One or more repository key fingerprints. Clients make sure that the key referred to in

.cvmfspublished matches one of these fingerprints.

2.4. Details of .cvmfspublished
These are the items in .cvmfspublished relevant to security:

1) The hash of the root catalog. Clients use this hash to find the catalog, and then use the catalog
to find the files in it and their hashes. They make sure all hashes match file contents.
Catalogs may also refer to other, nested catalogs, so the first one is called the root catalog.

2) The name of the repository. Clients make sure the name matches the expected name.

3) The number of seconds to cache .cvmfs* files. Clients re-load and re-verify signatures on
.cvmfswhitelist and .cvmfspublished after this number of seconds have elapsed.

4) The version number of the repository. Clients make sure the number does not decrease, to
prevent replay attacks where someone tries to insert an old version.

5) The timestamp of repository publication. Clients make sure the timestamp does not decrease,
again to prevent replay attacks.

6) The hash of the repository’s public key. Clients use this hash to find the key (actually an X.509
certificate), and make sure its fingerprint is one of the ones validated by .cvmfswhitelist.

2.5. The client blacklist
If a repository signing key is compromised, and the .cvmfswhitelist is updated to remove the
fingerprint corresponding to that key, there is still a possibility that for as long as 30 days the key thief
could combine the compromise with a replay attack using an old .cvmfswhitelist that still lists the
compromised key as valid, and publish data using the stolen key. For that reason, CVMFS clients also
honor an optional /etc/cvmfs/blacklist which lists key fingerprints to reject, in the same format as the
fingerprints in .cvmfswhitelist.

2.6. X.509 plan
Since the current CVMFS authenticity and integrity checking mechanism is weak on revocation if
there is a compromised key, plus since signing the .cvmfswhitelist files every 30 days can be
problematic if it is a manual operation, there is a plan to introduce an option of X.509 verification.
That would require having Certifying Authority (CA) certificates and Certificate Revocation Lists
(CRLs) on each client, which is already common practice on the WLCG. A file similar to
.cvmfswhitelist (e.g. .cvmfsXwhitelist) would be added that is signed by a master X.509 certificate’s
key. Rather than distributing the Stratum 0’s public key to clients, clients would then be configured
with either the Distinguished Name (DN) of the key or the DNS name of the Stratum 0 for validation
of the Stratum 0’s certificate. Each repository would also distribute the Stratum 0’s certificate like
they currently do with the repository’s certificate, and reference it from .cvmfsXwhitelist. Full X.509
validation of the repository certificate would also be introduced so they could be revoked if necessary.
Instead of listing the fingerprint of the certificate, .cvmfsXwhitelist would list the certificate’s DN..

3. Frontier Authenticity and Integrity Checking
Since Frontier only distributes data from a database which is not executable code, it isn’t as obvious
what an attacker could gain by tampering with the data. This is why up until recently there was no
cryptographic authenticity and integrity checking mechanism for Frontier. However, the data is used
by complex code that assumes the data is well-formatted, so if someone were to carefully analyze the
application there is likely to be a way to insert code by overflowing buffers. Figure 2 shows the
components and information flow in the new Frontier authenticity and integrity checking mechanism.

DB

http

X.509 cert

http

 Clients
CA certs
CRLs

Frontier
servers

X.509 cert
X.509 key

Squids

X.509 cert

Figure 2: Frontier authenticity and integrity checking components and flow

This is how Frontier authenticity and integrity checking works:

1) When a client with authenticity and integrity checking enabled starts reading from a server, it
first requests the X.509 certificate of that server. It then confirms that the certificate is valid
according to the CA certificates it has, confirms that the server certificate has not been
revoked by a CRL, and performs all other standard OpenSSL X.509 certificate verifications
including making sure the certificate has not expired. It also confirms that the server name is
listed in the certificate’s Common Name or one of the certificate’s alternate DNS names. The
client then extracts the RSA key from the certificate, which can be of any length supported by
OpenSSL.

2) Then for all queries, the Frontier client adds a parameter to each requested URL that asks that
the response be signed by the server. The server calculates a SHA-256 hash covering the
requested URL and the response data, encrypts the hash using the RSA key from it’s X.509
private key, and attaches the result to the end of the response as a signature.

3) The client calculates the SHA-256 hash of the URL it sent and of the data in each response,
decodes the signature using the server certificate’s RSA key, and confirms that the decoded
result matches the hash. Note that this confirms that the response is a valid response for the
corresponding URL, but it does not guard against replay attacks. The assumption is that
previous valid responses for the same request will do little harm, and there would be little
motivation for an attacker to insert an old response.

4. Comparison of the CVMFS & Frontier Security Mechanisms
CVMFS & Frontier use the same caching infrastructure and both verify authenticity and integrity of
data with digital signatures. Since CVMFS has the ability to pre-prepare the served data, it needs only
two digital signatures for the whole repository: one from the Stratum 0 to authenticate the repository’s
key, and one on the whole published version of the repository. Everything else is authenticated by
catalogs of secure hashes when downloading, and doesn’t need to be re-authenticated if a file is
accessed more than once from the client cache, so the performance impact is very low.

Frontier, on the other hand, cannot prepare digital signatures ahead of time for the results of every
possible query, so it has to dynamically sign the results as they’re read. The RSA encryption
algorithm used for signatures is a very slow process, so especially for small queries this is a high
overhead on the Frontier server, as much as a factor of ten. Fortunately, the high hit rate on caching,
especially when expired caches are reused with If-Modified-Since [4], results in only a very small
percentage of the total queries getting processed on the Frontier servers, so the existing servers have
plenty of capacity. Decrypting the RSA signature on the client side also has some overhead, but it is
much less than encrypting and it doesn’t significantly impact client performance.

The Frontier mechanism is simpler and easier to explain, but it isn’t as efficient as the CVMFS
mechanism.

Frontier uses X.509 for authentication, and CVMFS currently uses only lower-level OpenSSL
authentication mechanisms, but CVMFS is expecting to add X.509 capability.

5. Conclusions
CVMFS and Frontier both have effective mechanisms for ensuring that data they read over unsecured
networks match what is sent by small numbers of shared servers. The CVMFS mechanism is highly
efficient, and the Frontier mechanism is adequately efficient.

Acknowledgements
Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the United States Department of Energy.

References
[1] Blomer J, Buncic P, Charalampidis I, Harutyunyan A, Larsen D, and Meusel R 2012 Status and

future perspectives of CernVM-FS J. Phys.: Conf. Ser. 396 052013
[2] Dykstra D 2011 Scaling HEP to Web Size with RESTful Protocols: The Frontier Example J.

Phys.: Conf. Ser. 331 042008
[3] Viega J, Messier M, and Chandra P 2002 Network Security with OpenSSL (Sebastapol, CA:

O’Reilly)
[4] Dykstra D and Lueking L 2010 Greatly improved cache update times for conditions data with

Frontier/Squid J. Phys.: Conf. Ser. 219 072034

